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Abstract

In this work, we propose a novel adversarial defence mechanism for image classification –
Carso – blending the paradigms of adversarial training and adversarial purification in a
synergistic robustness-enhancing way. The method builds upon an adversarially-trained
classifier, and learns to map its internal representation associated with a potentially perturbed
input onto a distribution of tentative clean reconstructions. Multiple samples from such
distribution are classified by the same adversarially-trained model, and a carefully chosen
aggregation of its outputs finally constitutes the robust prediction of interest. Experimental
evaluation by a well-established benchmark of strong adaptive attacks, across different
image datasets, shows that Carso is able to defend itself against adaptive end-to-end
white-box attacks devised for stochastic defences. With a modest clean accuracy penalty, our
method improves by a significant margin the state-of-the-art for Cifar-10, Cifar-100, and
TinyImageNet-200 ℓ∞ robust classification accuracy against AutoAttack.

1 Introduction

Vulnerability to adversarial attacks (Biggio et al., 2013; Szegedy et al., 2014) – i.e. the presence of inputs,
usually crafted on purpose, capable of catastrophically altering the behaviour of high-dimensional models
(Bortolussi & Sanguinetti, 2018) – constitutes a major hurdle towards ensuring the compliance of deep
learning systems with the behaviour expected by modellers and users, and their adoption in safety-critical
scenarios or tightly-regulated environments. This is particularly true for adversarially-perturbed inputs, where
a norm-constrained perturbation – often hardly detectable by human inspection (Qin et al., 2019; Ballet
et al., 2019) – is added to an otherwise legitimate input, with the intention of eliciting an anomalous response
(Kurakin et al., 2018).

Given the widespread nature of the issue (Ilyas et al., 2019), and the serious concerns raised about the
safety and reliability of models learnt from data in the lack of appropriate mitigations (Biggio & Roli, 2018),
adversarial attacks have been extensively studied. However, obtaining generally robust machine learning
(ML) systems remains a longstanding issue, and a major open challenge.

Research in the field has been driven by two opposing yet complementary efforts. On the one hand, the
study of failure modes in existing models and defences, with the goal of understanding their origin and
developing stronger attacks with varying degrees of knowledge and control over the target system (Szegedy
et al., 2014; Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016; Tramèr et al., 2020). On the other hand,
the construction of increasingly capable defence mechanisms. Although alternatives have been explored
(Cisse et al., 2017; Tramèr et al., 2018; Carbone et al., 2020; Zhang et al., 2022), most of the latter is
based on adequately leveraging adversarial training (Goodfellow et al., 2015; Madry et al., 2018; Tramèr &
Boneh, 2019; Rebuffi et al., 2021; Gowal et al., 2021; Jia et al., 2022; Singh et al., 2023; Wang et al., 2023;
Cui et al., 2023; Peng et al., 2023), i.e. training a ML model on a dataset composed of (or enriched with)
adversarially-perturbed inputs associated with their correct, pre-perturbation labels. In fact, adversarial
training has been the only technique capable of consistently providing an acceptable level of defence (Gowal
et al., 2020), while still incrementally improving up to the current state-of-the-art (Cui et al., 2023; Peng
et al., 2023; Bartoldson et al., 2024).
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Another defensive approach is that of adversarial purification (Shi et al., 2021; Yoon et al., 2021), where a
generative model is used – similarly to denoising – to recover a perturbation-free version of the input before
classification is performed. Nonetheless, such attempts have generally fallen short of expectations due to
inherent limitations of the generative models used in early attempts (Nie et al., 2022), or due to decreases in
robust accuracy1 when attacked end-to-end (Gu & Rigazio, 2015; Lee & Kim, 2024) – resulting in subpar
robustness if the defensive structure is known to the adversary (Tramèr et al., 2020). More recently, the rise
of diffusion-based generative models (Huang et al., 2021) and their use for purification have enabled more
successful results of this kind (Nie et al., 2022; Chen et al., 2023) – although at the cost of longer training
and inference times, and a much brittler robustness evaluation (Chen et al., 2023; Lee & Kim, 2024).

In this work, we design a novel adversarial defence for supervised image classification, dubbed Carso
(Counter-Adversarial Recall of Synthetic Observations). The approach relies on an adversarially-trained
classifier (called hereinafter simply the classifier), endowed with a stochastic generative model (called
hereinafter the purifier). Upon classification of a potentially-perturbed input, the latter learns to generate –
from the tensor2 of (pre)activations registered at neuron level in the former – samples from a distribution
of plausible, perturbation-free reconstructions. At inference time, some of these samples are classified by
the very same classifier, and the original input is robustly labelled by aggregating its many outputs in the
form of a normalised doubly-exponential logit product. This method – to the best of our knowledge the first
attempt to organically merge the adversarial training and purification paradigms – avoids the vulnerability
pitfalls typical of the mere stacking of a purifier and a classifier (Gu & Rigazio, 2015; Lee & Kim, 2024),
while still being able to take advantage of independent incremental improvements to adversarial training or
generative modelling.

An empirical assessment3 of the defence in the ℓ∞ white-box setting is provided, using a conditional (Sohn
et al., 2015; Yan et al., 2016) variational autoencoder (Kingma & Welling, 2014; Rezende et al., 2014) as the
purifier and existing state-of-the-art adversarially pre-trained models as classifiers. Such choices are meant to
give existing approaches – and the adversary attacking our architecture end-to-end as part of the assessment –
the strongest advantage possible. Yet, in all scenarios considered, Carso improves significantly the robustness
of the pre-trained classifier – even against attacks specifically devised to fool stochastic defences like ours.
Remarkably, with a modest clean accuracy penalty, our method improves by a significant margin the current
state-of-the-art for Cifar-10 (Krizhevsky, 2009), Cifar-100 (Krizhevsky, 2009), and TinyImageNet-200
(Chrabaszcz et al., 2017) ℓ∞ robust classification accuracy against AutoAttack (Croce & Hein, 2020a).

In summary, the paper makes the following contributions:

• The description of Carso, a novel adversarial defence method synergistically blending adversarial
training and adversarial purification, thanks to representation-conditional purification and a dedicated
robust aggregation strategy;

• A collection of relevant technical details fundamental to its successful training and use, originally
developed for the purifier being a conditional variational autoencoder – but applicable to more
general scenarios as well;

• An experimental assessment of the method, against standardised benchmark adversarial attacks –
showing higher robust accuracy w.r.t. to existing state-of-the-art adversarial training and purification
approaches.

The rest of the manuscript is structured as follows. In section 2 we provide an overview of selected contributions
in the fields of adversarial training and purification-based defences – with focus on image classification. In
section 3, an introduction is given to two integral parts of our experimental assessment: Pgd adversarial
training and conditional variational autoencoders. Section 4 is devoted to the intuition behind Carso, its
1 The test set accuracy of the frozen-weights trained classifier – computed on a dataset entirely composed of adversarially-perturbed

examples generated against that specific model.
2 Which we call internal representation.
3 Implementation of the method and code for the experiments (based on PyTorch (Paszke et al., 2019), AdverTorch (Ding et al.,

2019), and ebtorch (Ballarin, 2025)) can be found in the supplementary materials to the paper.
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architectural description, and the relevant technical details that allow it to work effectively. Section 5 contains
details about the experimental setup, results, comments, and limitations. Section 6 concludes the paper and
outlines directions of future development.

2 Related work

Adversarial training as a defence The idea of training a model on adversarially-generated examples
as a way to make it more robust can be traced back to the very beginning of research in the area. In their
seminal work, Szegedy et al. (2014) propose to perform training on a mixed collection of clean and adversarial
data, generated beforehand.

The introduction of Fgsm (Goodfellow et al., 2015) enables the efficient generation of adversarial examples
along the training, with a single normalised gradient step. Its iterative generalisation Pgd (Madry et al., 2018)
– discussed in section 3 – significantly improves the effectiveness of the adversarial examples produced, making
it still the de facto standard for the synthesis of adversarial training inputs (Gowal et al., 2020). Further
incremental improvements have also been developed, some focused specifically on robustness assessment (e.g.
stepsize-adaptive variants, as by Croce & Hein (2020a)).

The most recent adversarial training protocols further rely on synthetic data to increase the numerosity of
training datapoints (Gowal et al., 2021; Rebuffi et al., 2021; Wang et al., 2023; Cui et al., 2023; Peng et al.,
2023; Bartoldson et al., 2024), and adopt adjusted loss functions to balance robustness and accuracy (Zhang
et al., 2019a) or generally foster the learning process (Cui et al., 2023). The entire model architecture may
also be tuned specifically for the sake of robustness enhancement (Peng et al., 2023). At least some of such
ingredients are often required to reach the current state-of-the-art in robust accuracy via adversarial training.

Purification as a defence Amongst the first attempts of purification-based adversarial defence, Gu &
Rigazio (2015) investigate the use of denoising autoencoders (Vincent et al., 2008) to recover examples free
from adversarial perturbations. Despite its effectiveness in the denoising task, the method may indeed increase
the vulnerability of the system when attacks are generated against it end-to-end. The contextually proposed
improvement adds a smoothness penalty to the reconstruction loss, partially mitigating such downside (Gu
& Rigazio, 2015). Similar in spirit, Liao et al. (2018) tackle the issue by computing the reconstruction loss
between the last-layers representations of the frozen-weights attacked classifier, respectively receiving, as
input, the clean and the tentatively denoised example.

In the work by Samangouei et al. (2018), Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)
learnt on clean data are used at inference time to find a plausible synthetic example – close to the perturbed
input – belonging to the unperturbed data manifold. Despite encouraging results, the delicate training
process of GANs and the existence of known failure modes (Zhang et al., 2018) limit the applicability of the
method. More recently, a similar approach (Hill et al., 2021) employing energy-based models (LeCun et al.,
2006) suffered from poor sample quality (Nie et al., 2022).

Purification approaches based on (conditional) variational autoencoders include the works by Hwang et al.
(2019) and Shi et al. (2021). Very recently, a technique combining variational manifold learning with a
test-time iterative purification procedure has also been proposed (Yang et al., 2024).

Finally, already-mentioned techniques relying on score- (Yoon et al., 2021) and diffusion- based (Nie et al.,
2022; Chen et al., 2023) models have also been developed, with generally favourable results – often balanced
in practice by longer training and inference times, and a much more fragile robustness assessment (Chen
et al., 2023; Lee & Kim, 2024).

3 Preliminaries

PGD adversarial training The task of finding model parameters robust to adversarial perturbations is
framed by Madry et al. (2018) as a min-max optimisation problem seeking to minimise adversarial risk. The
inner optimisation (i.e., the generation of worst-case adversarial examples) is solved by an iterative algorithm
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– Projected Gradient Descent – interleaving gradient ascent steps in input space with the eventual projection
on the shell of an ϵ-ball centred around an input datapoint, thus imposing a perturbation strength constraint.

In this manuscript, we will use the shorthand notation ϵp to denote ℓp norm-bound perturbations of maximum
magnitude ϵ.

(Conditional) variational autoencoders Variational autoencoders (VAEs) (Kingma & Welling, 2014;
Rezende et al., 2014) allow the learning from data of approximate generative latent-variable models of the
form p(x, z) = p(x | z)p(z), whose likelihood and posterior are approximately parametrised by deep artificial
neural networks (ANN s). The problem is cast as the maximisation of a variational lower bound.

In practice, optimisation is performed iteratively – on a loss function (LVAE) given by the linear mixture of
data-reconstruction loss and empirical KL divergence w.r.t. a chosen prior, computed on mini-batches of data.

Conditional Variational Autoencoders (Sohn et al., 2015; Yan et al., 2016) extend VAEs by attaching a
conditioning tensor c – expressing specific characteristics of each example – to both x and z during training.
This allows the learning of a decoder model capable of conditional data generation.

4 Structure of CARSO

The core ideas informing the design of our method are driven more by first principles rather than arising
from specific contingent requirements. This section discusses such ideas, the architectural details of Carso,
and a group of technical aspects fundamental to its training and inference processes.

4.1 Architectural overview and principle of operation

From an architectural point of view, Carso is essentially composed of two ANN models – a classifier and a
purifier – operating in close synergy. The former is trained on a given classification task, whose inputs might
be adversarially corrupted at inference time. The latter learns to generate samples from a distribution of
potential input reconstructions, tentatively free from adversarial perturbations. Crucially, the purifier has
only access to the internal representation of the classifier – and not even directly to the perturbed input – to
perform its task.

During inference, for each input, the internal representation of the classifier is used by the purifier to
synthesise a collection of tentatively unperturbed input reconstructions. Those are classified by the same
classifier, and the resulting outputs are aggregated into a final robust prediction.

There are no specific requirements for the classifier, whose training is completely independent of the use of the
model as part of Carso. However, training it adversarially significantly improves the robust accuracy of the
overall system (see Appendix D), also allowing it to benefit from established adversarial training techniques.

The purifier is also independent of specific architectural choices, provided it is capable of stochastic conditional
data generation at inference time, with the internal representation of the classifier used as conditioning.

In the rest of the paper, we employ a state-of-the-art adversarially pre-trained WideResNet model as
the classifier, and a purpose-built conditional variational autoencoder as the purifier, the latter operating
decoder-only during inference. Such choice was driven by the deliberate intention to assess the adversarial
robustness of our method in its worst-case scenario against a white-box attacker, and with the least advantage
compared to existing approaches based solely on adversarial training.

In fact, the decoder of a conditional VAE allows for exact algorithmic differentiability (Baydin et al., 2018)
w.r.t. its conditioning set, thus averting the need for backward-pass approximation (Athalye et al., 2018a) in
generating end-to-end adversarial attacks against the entire system, and preventing (un)intentional robustness
inflation by gradient obfuscation (Athalye et al., 2018a). The same cannot be said (Chen et al., 2023) for
more capable and modern purification models, such as those based e.g. on diffusive processes, whose proper
robustness assessment is still in the process of being thoroughly understood (Lee & Kim, 2024).
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A downside of such choice is represented by the reduced effectiveness of the decoder in the synthesis of
complex data, due to well-known model limitations. In fact, we experimentally observe a modest increase in
reconstruction cost for non-perturbed inputs, which in turn may limit the clean accuracy of the entire system.
Nevertheless, we defend the need for a fair and transparent robustness evaluation, such as the one provided
by the use of a VAE-based purifier, in the evaluation of any novel architecture-agnostic adversarial defence.

A diagram of the whole architecture is shown in Figure 1, and its detailed principles of operation are recapped
below. Additionally, an ablation study investigating the need for either the classifier or the purifier being
trained on adversarially-perturbed inputs is provided in Appendix D.

Figure 1: Schematic representation of the Carso architecture used in the experimental phase of this work.
The subnetwork bordered by the red dashed line is used only during the training of the purifier. The
subnetwork bordered by the blue dashed line is re-evaluated on different random samples zi and the resulting
individual ŷi are aggregated into ŷrob. The classifier f(·; θ) is always kept frozen; the remaining network is
trained on LVAE(x, x̂). More precise details on the functioning of the networks are provided in subsection 4.1.

Training At training time, adversarially-perturbed examples are generated against the classifier, and fed
to it. The tensors containing the classifier (pre)activations across the network are then extracted. Finally,
the conditional VAE serving as the purifier is trained on perturbation-free input reconstruction, conditional
on the corresponding previously-extracted internal representations, and using pre-perturbation examples as
targets.

Upon completion of the training process, the encoder network is discarded, as it will not be used for inference.

Inference The example requiring classification is fed to the classifier. Its corresponding internal representa-
tion is extracted and used to condition the generative process described by the decoder of the VAE. Stochastic
latent variables are repeatedly sampled from the original priors, which are given by an i.i.d. multivariate
Standard Normal distribution. Each element in the resulting set of reconstructed inputs is classified by the
same classifier, and the individually predicted class logits are aggregated. The result of such aggregation
constitutes the robust prediction of the input class.

Remarkably, the only link between the initial potentially-perturbed input and the resulting purified recon-
structions (and thus the predicted class) happens through the internal representation of the classifier, which
serves as a featurisation of the original input. The whole process is exactly differentiable end-to-end, and
the only potential hurdle to the generation of adversarial attacks against the entire system is the stochastic
nature of the decoding – which is easily tackled by Expectation over Transformation (Athalye et al., 2018b).
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4.2 A first-principles justification

If we consider a trained ANN classifier, subject to a successful adversarial attack by means of a slightly
perturbed example, we observe that – both in terms of ℓp magnitude and human perception (Bartoldson et al.,
2024) – a small variation on the input side of the network is amplified to a significant amount on the output
side, thanks to the layerwise processing by the model. Given the deterministic nature of such processing at
inference time, we speculate that the trace obtained by sequentially collecting the (pre)activation values within
the network, along the forward pass, constitutes a richer characterisation of such an amplification process
compared to the knowledge of the input alone. Indeed, as we do, it is possible to learn a direct mapping from
such featurisation of the input, to a distribution of possible perturbation-free input reconstructions – in a
way that takes advantage of such characterisation.

4.3 Hierarchical input and internal representation encoding

Training a conditional VAE requires (Sohn et al., 2015) that the conditioning set c is concatenated to the
input x before encoding occurs, and to the sample of latent variables z right before decoding. The same is
also true, with the suitable adjustments, for any conditional generative approach where the target and the
conditioning set must be processed jointly.

In order to ensure the usability and scalability of Carso across the widest range of input data and classifier
models, we propose to perform such processing in a hierarchical and partially disjoint fashion between the
input and the conditioning set. In principle, the encoding of x and c can be performed by two different and
independent subnetworks, until some form of joint processing must occur. This allows to retain the overall
architectural structure of the purifier, while having finer-grained control over the inductive biases (Mitchell,
1980) deemed the most suitable for the respective variables.

In the experimental phase of our work, we encode the two variables independently. The input is compressed
by a multilayer convolutional neural network (CNN). The internal representation – which in our case is
composed of differently sized multi-channel images – is processed layer by layer by independent multilayer
CNNs (responsible for encoding local information), whose flattened outputs are finally concatenated and
compressed by a fully-connected layer (modelling inter-layer correlations in the representation). The resulting
compressed input and conditioning set are then further concatenated and jointly encoded by a fully-connected
network (FCN).

In order to use the VAE decoder at inference time, the compression machinery for the conditioning set must
be preserved after training, and used to encode the internal representations extracted. The input encoder
may be discarded instead.

4.4 Adversarially-balanced batches

Training the purifier in representation-conditional input reconstruction requires having access to adversarially-
perturbed examples generated against the classifier, and to the corresponding clean data. Specifically, we use
as input a mixture of clean and adversarially perturbed examples, and the clean input as the target.

Within each epoch, the training set of interest is shuffled (Robbins & Monro, 1951; Bottou, 1999), and only
a fixed fraction of each resulting batch is adversarially perturbed. Calling ϵ the maximum ℓp perturbation
norm bound for the threat model against which the classifier was adversarially pre-trained, the portion of
perturbed examples is generated by an even split of Fgsmϵ/2, Pgdϵ/2, Fgsmϵ, and Pgdϵ attacks.

Any smaller subset of attack types and strengths, or a detailedly unbalanced batch composition, experimentally
results in a worse-performing purification model. More details justifying such choice are provided in
Appendix A.

4.5 Robust aggregation strategy

At inference time, many different input reconstructions are classified by the classifier, and the respective
outputs concur to the settlement of a robust prediction.
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Calling lα
i the output logit associated with class i ∈ {1, . . . , C} in the prediction by the classifier on sample

α ∈ {1, . . . , N}, we adopt the following aggregation strategy:

Pi := 1
Z

N∏
α=1

ee
lα
i

with Pi being the aggregated probability of membership in class i, Z a normalisation constant such that∑C
i=1 Pi = 1, and e Euler’s number.

Such choice produces a robust prediction much harder to overtake in the event that an adversary selectively
targets a specific input reconstruction. A heuristic analysis of this property (subsection B.1), together with
an experimental justification for using such aggregation function within Carso (subsection B.2), are given in
Appendix B.

5 Experimental assessment

Experimental evaluation of our method is carried out in terms of robust and clean image classification accuracy
within three different scenarios (a, b, and c), determined by different classification tasks. The white-box threat
model with a fixed ℓ∞ norm bound is assumed throughout, as it generally constitutes the most demanding
setup for adversarial defences.

5.1 Setup

Data The Cifar-10 (Krizhevsky, 2009) dataset is used in scenario (a), the Cifar-100 (Krizhevsky, 2009)
dataset is used in scenario (b), whereas the TinyImageNet-200 (Chrabaszcz et al., 2017) dataset is used in
scenario (c).

Architectures A WideResNet-28-10 model is used as the classifier, adversarially pre-trained on the
respective dataset – the only difference between scenarios being the size of the inputs, and the number of
output logits: 10 in scenario (a), 100 in scenario (b), and 200 in scenario (c).

The purifier is composed of a conditional VAE, processing inputs and internal representations in a partially
disjoint fashion, as explained in subsection 4.3. The input is compressed by a two-layer CNN; the internal
representation is instead processed layerwise by independent CNNs (three-layered in scenarios (a) and (b),
four-layered in scenario (c)) whose outputs are then concatenated and compressed by a fully-connected layer.
A final two-layer FCN jointly encodes the compressed input and conditioning set, after the concatenation of
the two. A six-layer deconvolutional network is used as the decoder.

More precise details on all architectures are given in Appendix C.

Outer minimisation In scenarios (a) and (b), the classifier is trained according to Cui et al. (2023); in
scenario (c), according to Wang et al. (2023). Classifiers were always acquired as pre-trained models, using
publicly available weights provided by the respective authors.

The purifier is trained on the VAE loss, using summed pixel-wise channel-wise binary cross-entropy as the
reconstruction cost. Optimisation is performed by RAdam+Lookahead (Liu et al., 2020; Zhang et al.,
2019b) with a learning rate schedule that presents a linear warm-up, a plateau phase, and a linear annealing
(Smith, 2017). To promote the learning of meaningful reconstructions during the initial phases of training,
the KL divergence term in the VAE loss is suppressed for an initial number of epochs. Afterwards, it is
linearly modulated up to its actual value, along a fixed number of epochs (β increase) (Higgins et al., 2017).
The initial and final epochs of such modulation are reported in Table 16.

Additional scenario-specific details are provided in Appendix C.

Inner minimisation ϵ∞ = 8/255 is set as the perturbation norm bound.
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Adversarial examples against the purifier are obtained, as explained in subsection 4.4, by Fgsmϵ/2, Pgdϵ/2,
Fgsmϵ, and Pgdϵ, in a class-untargeted fashion on the cross-entropy loss. In the case of Pgd, gradient ascent
with a step size of α = 0.01 is used.

The complete details and hyperparameters of the attacks are described in Appendix C.

Evaluation In each scenario, we report the clean and robust test-set accuracy – the latter by means
of AutoAttack (Croce & Hein, 2020a) – of the classifier alone, and that of the corresponding Carso
architecture.

For the classifier alone, the standard version of AutoAttack (AA) is used: i.e., the worst-case accuracy on
a mixture of AutoPgd on the cross-entropy loss (Croce & Hein, 2020a) with 100 steps, AutoPgd on the
difference of logits ratio loss (Croce & Hein, 2020a) with 100 steps, Fab (Croce & Hein, 2020b) with 100
steps, and the black-box Square attack (Andriushchenko et al., 2020) with 5000 queries.

In the evaluation of the Carso architecture, the number of reconstructed samples per input is set to 8, the
logits are aggregated as explained in subsection 4.5, and the output class is finally selected as the arg max
of the aggregation. Due to the stochastic nature of the purifier, robust accuracy is assessed by a version of
AutoAttack suitable for stochastic defences (randAA) – composed of AutoPgd on the cross-entropy and
difference of logits ratio losses, across 20 Expectation over Transformation (EoT) (Athalye et al., 2018b)
iterations with 100 gradient ascent steps each. In the specific case of scenario (a), we also assess our method
by the Pgd+EoT pipeline proposed by Lee & Kim (2024), as explained in subsection 5.2.

Computational infrastructure All experiments were performed on an NVIDIA DGX A100 system.
Training in scenarios (a) and (c) was run on 8 NVIDIA A100 GPUs with 40 GB of dedicated memory each;
in scenario (b) 4 of such devices were used. Elapsed training time for the purifier in all scenarios is reported
in Table 1.

Table 1: Elapsed running time for training the purifier in the different scenarios considered.

Scenario (a) (b) (c)

Elapsed training time 159 min 138 min 213 min

5.2 Results and discussion

An analysis of the experimental results is provided in the subsection that follows, whereas their systematic
exposition is given in Table 2. Results obtained by using deliberately worse-performing pretrained classifiers,
as well as a broader comparison with existing adversarial defences from literature, are provided in Appendix E.

Scenario (a) Comparing the robust accuracy of the classifier model used in scenario (a) (Cui et al., 2023)
with that resulting from the inclusion of the same model in the Carso architecture, we observe a +8.4%
increase. This is counterbalanced by a −5.6% clean accuracy decrease. The same version of Carso further
provides a +2.42 robustness increase w.r.t. the current best AT-trained model (Bartoldson et al., 2024) that
employs a ∼ 4× larger WideResNet-96-16 model.

In addition, our method provides a remarkable +9.72% increase in robust accuracy w.r.t. to the best
adversarial purification approach (Lin et al., 2024), a diffusion-based purifier. However, the comparison is
not as straightforward. In fact, the original paper (Lin et al., 2024) reports a robust accuracy of 78.12%
using AutoAttack on the gradients obtained via the adjoint method (Nie et al., 2022). As noted in Lee
& Kim (2024), such evaluation (which uses the version of AutoAttack that is unsuitable for stochastic
defences) leads to a large overestimation of the robustness of diffusive purifiers. As suggested in Lee & Kim
(2024), the authors of Lin et al. (2024) re-evaluate the robust accuracy according to a more suitable pipeline
(Pgd+EoT, whose hyperparameters are shown in Table 14), obtaining a much lower robust accuracy of
66.41%. Consequently, we repeat the same evaluation for Carso and compare the worst-case robustness
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Table 2: Clean (results in italic) and adversarial (results in upright) accuracy for the different models and datasets
used in the respective scenarios. The following abbreviations are used: Scen: scenario considered; AT/Cl: clean
accuracy for the adversarially-pretrained model used as the classifier, when considered alone; C/Cl: clean accuracy for
the Carso architecture; AT/AA: robust accuracy (by the means of AutoAttack) for the adversarially-pretrained model
used as the classifier, when considered alone; C/randAA: robust accuracy for the Carso architecture, when attacked
end-to-end by AutoAttack for randomised defences; Best AT/AA: best robust accuracy result for the respective
dataset (by the means of AutoAttack), obtained by adversarial training alone (any model); Best P/AA: best robust
accuracy result for the respective dataset (by the means of AutoAttack), obtained by adversarial purification (any
model). Robust accuracies in round brackets are obtained using the Pgd+EoT (Lee & Kim, 2024) pipeline, developed
for diffusion-based purifiers. The best clean and robust accuracies per dataset are shown in bold. The clean accuracies
for the models referred to in the Best columns are shown in Table 19 (in Appendix E).

Scen. Dataset AT/Cl C/Cl AT/AA C/randAA
(Pgd+EoT) Best AT/AA Best P/AA

(Pgd+EoT)

(a) Cifar-10 0.9216 0.8686 0.6773 0.7613
(0.7689) 0.7371 0.7812

(0.6641)

(b) Cifar-100 0.7385 0.6806 0.3918 0.6665 0.4267 0.4609

(c) TinyImageNet-200 0.6519 0.5632 0.3130 0.5356 0.3130

amongst the two. In line with typical AT methods, and unlike diffusive purification, the robustness of Carso
assessed by means of randAA remains lower w.r.t. that achieved by Pgd+EoT.

Scenario (b) Moving to scenario (b), Carso achieves a robust accuracy increase of +27.47% w.r.t. the
classifier alone (Cui et al., 2023), balanced by a −5.79% decrease in clean accuracy. Our approach also
improves upon the robust accuracy of the best AT-trained model (Wang et al., 2023) (WideResNet-70-
16) by +23.98%. In the absence of a reliable robustness evaluation by means of Pgd+EoT for the best
purification-based method (Lin et al., 2024), we still obtain a +20.25% increase in robust accuracy upon its
(largely overestimated) AA result.

Scenario (c) In scenario (c), Carso improves upon the classifier alone (Wang et al., 2023) (which is
also the best AT-based approach for TinyImageNet-200) by +22.26%. A significant clean accuracy toll
is imposed by the relative complexity of the dataset, i.e. −8.87%. In this setting, we lack any additional
purification-based methods.

Assessing the impact of gradient obfuscation Although the architecture of Carso is algorithmically
differentiable end-to-end – and the integrated diagnostics of the randAA routines identified no pitfalls during
the assessment – we additionally guard against the eventual gradient obfuscation (Athalye et al., 2018a)
induced by our method by repeating the evaluation at ϵ∞ = 0.95, verifying that the resulting robust accuracy
stays below random chance (Carlini et al., 2019). Results are shown in Table 3.

Table 3: Robust classification accuracy against AutoAttack, for ϵ∞ = 0.95, as a way to assess the (lack of) impact
of gradient obfuscation on robust accuracy evaluation.

Scenario (a) (b) (c)

ϵ∞ = 0.95 acc. <0.047 <0.010 ≈0.0

5.3 Limitations and open problems

In line with recent research aiming at the development of robust defences against multiple perturbations
(Dolatabadi et al., 2022; Laidlaw et al., 2021), our method produces a decrease in clean accuracy w.r.t. the
original model on which it is built upon – especially in scenario (c) as the complexity of the classification
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task increases. This phenomenon is partially dependent on the choice of a VAE as the generative purification
model, a requirement for the fairest evaluation possible in terms of robustness.

Yet, the issue remains open: is it possible to devise a Carso-like architecture capable of the same – if not
better – robust behaviour, which is also competitively accurate on clean inputs? Potential avenues for future
research may involve the development of Carso-like architectures in which representation-conditional data
generation is obtained by means of diffusion or score-based models. Alternatively, incremental developments
aimed at improving the cross-talk between the purifier and the final classifier may be pursued.

Additionally, the scalability of Carso could be strongly improved by determining whether the internal
representation used in conditional data generation may be restricted to a smaller subset of layers, while still
maintaining the general robustness of the method.

Finally, a thorough investigation of the normalised doubly-exponential logit product aggregation strategy needs
to be undertaken in order to shed some light on the specific mechanisms that lead to the much improved
defensive capabilities of the system.

6 Conclusion

In this work, we presented a novel adversarial defence mechanism tightly integrating input purification, and
classification by an adversarially-trained model – in the form of representation-conditional data purification,
followed by a specific logit aggregation. Our method is able to improve upon the current state-of-the-art in
Cifar-10, Cifar-100, and TinyImageNet ℓ∞ robust classification, w.r.t. both adversarial training and
purification approaches alone.

Such results suggest a new synergistic strategy to achieve adversarial robustness in visual tasks and motivate
future research on the application of the same design principles to different models and types of data.

Broader Impact Statement

In this work, we investigate the use of a novel technique for the improvement of adversarial robustness in
image classification models. Our method does not carry the potential for additional risks or implications
in sensitive areas, in comparison to the original models used. Indeed, the goal of our technique is instead
to ultimately improve and enhance the robustness of classification models to make them more trustworthy,
predictable, and resistant to tampering.

10
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A Justification of Adversarially-balanced batches

During the incipient phases of experimentation, preliminary tests were performed with the MNIST (LeCun &
Cortes, 2010) and Fashion-MNIST (Xiao et al., 2017) datasets – using a conditional VAE as the purifier,
and small FCNs or convolutional ANN s as the classifiers. Adversarial examples were generated against
the adversarially pre-trained classifier, and tentatively denoised by the purifier with one sample only. The
resulting recovered inputs were classified by the classifier and the overall accuracy was recorded.

Importantly, such tests were not meant to assess the end-to-end adversarial robustness of the whole architecture,
but only to tune the training protocol of the purifier.

Generating adversarial training examples by means of Pgd is considered the gold standard (Gowal et al.,
2020) and was first attempted as a natural choice to train the purifier. However, in this case, the following
phenomena were observed:

• Unsatisfactory clean accuracy was reached upon convergence, speculatively a consequence of the
VAE having never been trained on clean-to-clean example reconstruction;

• Persistent vulnerability to same norm-bound Fgsm perturbations was noticed;

• Persistent vulnerability to smaller norm-bound Fgsm and Pgd perturbations was noticed.

In an attempt to mitigate such issues, the composition of adversarial examples was adjusted to specifically
counteract each of the issues uncovered. The adoption of any smaller subset of attack types or strength,
compared to that described in subsection 4.4, resulted in unsatisfactory mitigation.

At that point, another problem emerged: if such an adversarial training protocol was carried out in
homogeneous batches, each containing the same type and strength of attack (or none at all), the resulting
robust accuracy was still partially compromised due to the homogeneous ordering of attack types and strengths
across batches.

Such observations lead to the final formulation of the training protocol, detailed in subsection 4.4, which
mitigates to the best the issues described so far.

B Justification of the robust aggregation strategy

The rationale leading to the choice of the specific robust aggregation strategy described in subsection 4.5 was
an attempt to answer the following question: ‘How is it possible to aggregate the results of an ensemble of
classifiers in a way such that it is hard to tilt the balance of the ensemble by attacking only a few of its
members?’. The same reasoning can be extended to the reciprocal problem we are trying to solve here, where
different input reconstructions obtained from the same potentially perturbed input are classified by the same
model (the classifier).

B.1 Heuristic analysis

Far from providing a satisfactory answer, we can analyse the behaviour of our aggregation strategy as the logit
associated with a given model and class varies across its domain, under the effect of adversarial intervention.
Comparison with existing (and more popular) probability averaging and logit averaging aggregation strategies
should provide a heuristic justification of our choice.

We recall our aggregation strategy:

Pi := 1
Z

N∏
α=1

ee
lα
i .

Additionally, we recall logit averaging aggregation
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and probability averaging aggregation

Pi := 1
Z
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α=1
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=
N∑
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Qα

where Qα =
∑C

j=1 elα
j .

Finally, since lα
i ∈ R, ∀lα

i , limx→−∞ ex = 0 and e0 = 1, we can observe that elα
i > 0 and ee

lα
i > 1, ∀lα

i .

Now, we consider a given class i⋆ and the classifier prediction on a given input reconstruction α⋆, and
study the potential effect of an adversary acting on lα⋆

i⋆ . This adversarial intervention can be framed in two
complementary scenarios: either the class i⋆ is correct and the adversary aims to decrease its membership
probability, or the class i⋆ is incorrect and the adversary aims to increase its membership probability. In any
case, the adversary should comply with the ϵ∞-boundedness of its perturbation on the input.

Logit averaging In the former scenario, the product of elα
i terms can be arbitrarily deflated (up to zero)

by lowering the lα⋆

i⋆ logit only. In the latter scenario, the logit can be arbitrarily inflated, and such effect is
only partially suppressed by normalisation by Z (a sum of 1/N-exponentiated terms, N ≥ 1).

Probability averaging In the former scenario, although the effect of the deflation of a single logit is
bounded by elα⋆

i⋆ > 0, two attack strategies are possible: either decreasing the value of lα⋆

i⋆ or increasing the
value of Qα⋆ , giving rise to complex combined effects. In the latter scenario, the reciprocal is possible, i.e.
either inflating lα⋆

i⋆ or deflating Qα⋆ . Normalisation has no effect in both cases.

Ours In the former scenario, the effect of logit deflation on a single product term is bounded by ee
lα⋆

i⋆
> 1,

thus exerting only a minimal collateral effect on the product, through a decrease of Z. This effectively
prevents aggregation takeover by logit deflation. Similarly to logit averaging, in the latter scenario, the logit
can be arbitrarily inflated. However, in this case, the effect of normalisation by Z is much stronger, given its
increased magnitude (addends are not 1/N-exponentiated, N ≥ 1).

From such a comparison, our aggregation strategy is the only one that strongly prevents adversarial takeover
by logit deflation, while still defending well against perturbations targeting logit inflation.

B.2 Experimental analysis

To further corroborate the choice of the specific aggregation function described in subsection 4.5, we repeat
the assessment of Carso under the same conditions described in section 5, the only difference being the
use of the alternative aggregation functions analysed in subsection B.1 (i.e. logit and probability averaging
aggregation). Results, in terms of both clean and robust accuracy, are shown in Table 4.

In Table 5, we additionally provide the same clean and robust accuracy assessment for the naive and non
algorithmically-differentiable majority voting aggregation strategy. In such regard, it is important to remark
that the non-differentiability of majority voting results in the vast portion (> 99%) of gradient samples
used by AutoAttack being either zero or not-a-number. Thus, the result of robustness assessment has to
be considered unreliable – and not the mark of exceptional robustness – as almost exclusively the effect of
gradient obfuscation.

As we can see, the use of alternative aggregation strategies leads to minimal variations in the clean accuracy
attained, whereas the corresponding robust accuracy sharply decreases – in the case of Cifar-10 even below
random chance – as the attacks become increasingly effective (or is unreliable, as it is the case for majority
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Table 4: Clean (results in italic) and adversarial (results in upright) accuracy for alternative aggregation strategies
used within Carso. The following abbreviations are used: Scen: scenario considered; C/Cl (L.A.): clean accuracy of
Carso with logit average aggregation; C/randAA (L.A.): robust accuracy of Carso with logit average aggregation,
assessed by means of AutoAttack for stochastic defences; C/Cl (P.A.): clean accuracy of Carso with probability
average aggregation; C/randAA (P.A.): robust accuracy of Carso with probability average aggregation, assessed
by means of AutoAttack for stochastic defences; C/Cl: clean accuracy of Carso with our proposed aggregation;
C/randAA: robust accuracy of Carso with our proposed aggregation, assessed by means of AutoAttack for stochastic
defences. Results from the last two columns mirror those of Table 2.

Scen. Dataset C/Cl (L.A.) C/randAA (L.A.) C/Cl (P.A.) C/randAA (P.A.) C/Cl C/randAA

(a) Cifar-10 0.8688 0.0086 0.8688 0.0092 0.8686 0.7613

(b) Cifar-100 0.6808 0.0436 0.6807 0.0439 0.6806 0.6665

Table 5: Clean (results in italic) and adversarial (results in upright) accuracy resulting from the use of the majority
vote aggregation strategy within Carso. The following abbreviations are used: Scen: scenario considered; C/Cl
(M.V.): clean accuracy of Carso with majority vote aggregation; C/randAA (M.V.): robust accuracy of Carso with
majority vote aggregation, assessed by means of AutoAttack for stochastic defences. Almost the entirety of gradient
samples computed by AutoAttack has been deemed unreliable by integrated diagnostics, and the robust accuracy
results must be considered untrustworthy.

Scen. Dataset C/Cl (M.V.) C/randAA (M.V.)

(a) Cifar-10 0.8691 0.8602

(b) Cifar-100 0.6805 0.6698

voting). Such results strongly corroborate the use of the normalised doubly-exponential logit product proposed
as the aggregation strategy in subsection 4.5 and prove its central role in the overall adversarial robustness
and reliability of the method.

C Architectural details and hyperparameters

In the following section, we provide more precise details about the architectures (subsection C.1) and
hyperparameters (subsection C.2) used in the experimental phase of our work.

C.1 Architectures

In the following subsection, we describe the specific structure of the individual parts composing the purifier –
in the three scenarios considered. As far as the classifier architectures are concerned, we redirect the reader
to the original articles introducing those models (i.e., those by Cui et al. (2023) for scenarios (a) and (b),
Wang et al. (2023) for scenario (c)).

During training, before being processed by the purifier encoder, input examples are standardised according
to the statistics of the respective training dataset.

Afterwards, they are fed to the disjoint input encoder (see subsection 4.3), whose architecture is shown in
Table 6. The same architecture is used in all scenarios considered.

The original input is also fed to the classifier. The corresponding internal representation is extracted,
preserving its layered structure. In order to improve the scalability of the method, only a subset of classifier
layers is used instead of the whole internal representation. Specifically, for each block of the WideResNet
architecture, only the first layers have been considered; two skip connections have also been added for good
measure. The exact list of those layers is reported in Table 7.
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Table 6: Architecture for the disjoint input encoder of the purifier. The same architecture is used in all scenarios
considered. The architecture is represented layer by layer, from input to output, in a PyTorch-like syntax. The
following abbreviations are used: Conv2D: 2-dimensional convolutional layer; ch_in: number of input channels; ch_out:
number of output channels; ks: kernel size; s: stride; p: padding; b: presence of a learnable bias term; BatchNorm2D:
2-dimensional batch normalisation layer; affine: presence of learnable affine transform coefficients; slope: slope for
the activation function in the negative semi-domain.

Disjoint Input Encoder (all scenarios)

Conv2D(ch_in=3, ch_out=6, ks=3, s=2, p=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=6, ch_out=12, ks=3, s=2, p=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)

Table 7: Classifier model (WideResNet-28-10) layer names used as (a subset of) the internal representation fed to
the layerwise convolutional encoder of the purifier. The names reflect those used in the model implementation.

All scenarios

layer.0.block.0.conv_0
layer.0.block.0.conv_1
layer.0.block.1.conv_0
layer.0.block.1.conv_1
layer.0.block.2.conv_0
layer.0.block.2.conv_1
layer.0.block.3.conv_0
layer.0.block.3.conv_1
layer.1.block.0.conv_0
layer.1.block.0.conv_1
layer.1.block.0.shortcut
layer.1.block.1.conv_0
layer.1.block.1.conv_1
layer.1.block.2.conv_0
layer.1.block.2.conv_1
layer.1.block.3.conv_0
layer.1.block.3.conv_1
layer.2.block.0.conv_0
layer.2.block.0.conv_1
layer.2.block.0.shortcut
layer.2.block.1.conv_0
layer.2.block.1.conv_1
layer.2.block.2.conv_0
layer.2.block.2.conv_1
layer.2.block.3.conv_0
layer.2.block.3.conv_1
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Each extracted layerwise (pre)activation tensor has the shape of a multi-channel image, which is processed –
independently for each layer – by a different CNN whose individual architecture is shown in Table 8 (scenarios
(a) and (b)) and Table 9 (scenario (c)).

Table 8: Architecture for the layerwise internal representation encoder of the purifier. The architecture shown in
this table is used in scenarios (a) and (b). The architecture is represented layer by layer, from input to output,
in a PyTorch-like syntax. The following abbreviations are used: Conv2D: 2-dimensional convolutional layer; ch_in:
number of input channels; ch_out: number of output channels; ks: kernel size; s: stride; p: padding; b: presence of
a learnable bias term; BatchNorm2D: 2-dimensional batch normalisation layer; affine: presence of learnable affine
transform coefficients; slope: slope for the activation function in the negative semi-domain. The abbreviation [ci]
indicates the number of input channels for the (pre)activation tensor of each extracted layer. The abbreviation ceil
indicates the ceiling integer rounding function.

Layerwise Internal Representation Encoder (scenarios (a) and (b))

Conv2D(ch_in=[ci], ch_out=ceil([ci]/2), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/2), ch_out=ceil([ci]/4), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/4), ch_out=ceil([ci]/8), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)

Table 9: Architecture for the layerwise internal representation encoder of the purifier. The architecture shown in this
table is used in scenario (c). The architecture is represented layer by layer, from input to output, in a PyTorch-like
syntax. The following abbreviations are used: Conv2D: 2-dimensional convolutional layer; ch_in: number of input
channels; ch_out: number of output channels; ks: kernel size; s: stride; p: padding; b: presence of a learnable
bias term; BatchNorm2D: 2-dimensional batch normalisation layer; affine: presence of learnable affine transform
coefficients; slope: slope for the activation function in the negative semi-domain. The abbreviation [ci] indicates the
number of input channels for the (pre)activation tensor of each extracted layer. The abbreviation ceil indicates the
ceiling integer rounding function.

Layerwise Internal Representation Encoder (scenario (c))

Conv2D(ch_in=[ci], ch_out=ceil([ci]/2), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/2), ch_out=ceil([ci]/4), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/4), ch_out=ceil([ci]/8), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/8), ch_out=ceil([ci]/16), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)

The resulting tensors (still having the shape of multi-channel images) are then jointly processed by a fully-
connected subnetwork whose architecture is shown in Table 10. The value of fcrepr for the different scenarios
considered is shown in Table 15.

The compressed input and compressed internal representation so obtained are finally jointly encoded by an
additional fully-connected subnetwork whose architecture is shown in Table 11. The output is a tuple of
means and standard deviations to be used to sample the stochastic latent code z.

19



Under review as submission to TMLR

Table 10: Architecture for the fully-connected representation encoder of the purifier. The architecture shown in
this table is used in all scenarios considered. The architecture is represented layer by layer, from input to output, in
a PyTorch-like syntax. The following abbreviations are used: Concatenate: layer concatenating its input features;
flatten_features: whether the input features are to be flattened before concatenation; feats_in, feats_out: number
of input and output features of a linear layer; b: presence of a learnable bias term; BatchNorm1D: 1-dimensional
batch normalisation layer; affine: presence of learnable affine transform coefficients; slope: slope for the activation
function in the negative semi-domain. The abbreviation [computed] indicates that the number of features is computed
according to the shape of the concatenated input tensors. The value of fcrepr for the different scenarios considered is
shown in Table 15.

Fully-Connected Representation Encoder (all scenarios)

Concatenate(flatten_features=True)
Linear(feats_in=[computed], feats_out=fcrepr, b=False)
BatchNorm1D(affine=True)
LeakyReLU(slope=0.2)

Table 11: Architecture for the fully-connected joint encoder of the purifier. The architecture shown in this table is
used in all scenarios considered. The architecture is represented layer by layer, from input to output, in a PyTorch-like
syntax. The following abbreviations are used: Concatenate: layer concatenating its input features; flatten_features:
whether the input features are to be flattened before concatenation; feats_in, feats_out: number of input and
output features of a linear layer; b: presence of a learnable bias term; BatchNorm1D: 1-dimensional batch normalisation
layer; affine: presence of learnable affine transform coefficients; slope: slope for the activation function in the
negative semi-domain. The abbreviation [computed] indicates that the number of features is computed according to
the shape of the concatenated input tensors. The value of fjoint for the different scenarios considered is shown in
Table 15. The last layer of the network returns a tuple of 2 tensors, each independently processed – from the output
of the previous layer – by the two comma-separated sub-layers.

Fully-Connected Joint Encoder (all scenarios)

Concatenate(flatten_features=True)
Linear(feats_in=[computed], feats_out=fjoint, b=False)
BatchNorm1D(affine=True)
LeakyReLU(slope=0.2)
( Linear(feats_in=fjoint, feats_out=fjoint, b=True),

Linear(feats_in=fjoint, feats_out=fjoint, b=True) )
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The sampler used for the generation of such latent variables z, during the training of the purifier, is a
reparameterised (Kingma & Welling, 2014) Normal sampler z ∼ N (µ, σ). During inference, z is sampled by
reparameterisation from the i.i.d Standard Normal distribution z ∼ N (0, 1) (i.e. from its original prior).

The architectures for the decoder of the purifier are shown in Table 12 (scenarios (a) and (b)) and Table 13
(scenario (c)).

Table 12: Architecture for the decoder of the purifier. The architecture shown in this table is used in scenarios (a)
and (b). The architecture is represented layer by layer, from input to output, in a PyTorch-like syntax. The following
abbreviations are used: Concatenate: layer concatenating its input features; flatten_features: whether the input
features are to be flattened before concatenation; feats_in, feats_out: number of input and output features of a
linear layer; b: presence of a learnable bias term; ConvTranspose2D: 2-dimensional transposed convolutional layer;
ch_in: number of input channels; ch_out: number of output channels; ks: kernel size; s: stride; p: padding; op:
PyTorch parameter ‘output padding’, used to disambiguate the number of spatial dimensions of the resulting output;
b: presence of a learnable bias term; BatchNorm2D: 2-dimensional batch normalisation layer; affine: presence of
learnable affine transform coefficients; slope: slope for the activation function in the negative semi-domain. The
values of fjoint and fcrepr for the different scenarios considered are shown in Table 15.

Decoder (scenarios (a) and (b))

Concatenate(flatten_features=True)
Linear(feats_in=[fjoint+fcrepr], feats_out=2304, b=True)
LeakyReLU(slope=0.2)
Unflatten(256, 3, 3)
ConvTranspose2D(ch_in=256, ch_out=256, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=256, ch_out=128, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=128, ch_out=64, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=64, ch_out=32, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=32, ch_out=3, ks=2, s=1, p=1, op=0, b=True)
Sigmoid()

C.2 Hyperparameters

In the following section, we provide the hyperparameters used for adversarial example generation and
optimisation during the training of the purifier, and those related to the purifier model architectures. We
also provide the hyperparameters for the Pgd+EoT attack, which is used as a complementary tool for the
evaluation of adversarial robustness.

Attacks The hyperparameters used for the adversarial attacks described in subsection 4.4 are shown in
Table 14. The value of ϵ∞ is fixed to ϵ∞ = 8/255. With the only exception of ϵ∞, AutoAttack is to be
considered a hyperparameter-free adversarial example generator.

Architectures Table 15 contains the hyperparameters that define the model architectures used as part of
the purifier, in the different scenarios considered.

Training Table 16 collects the hyperparameters governing the training of the purifier in the different
scenarios considered.
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Table 13: Architecture for the decoder of the purifier. The architecture shown in this table is used in scenario
(c). The architecture is represented layer by layer, from input to output, in a PyTorch-like syntax. The following
abbreviations are used: Concatenate: layer concatenating its input features; flatten_features: whether the input
features are to be flattened before concatenation; feats_in, feats_out: number of input and output features of a
linear layer; b: presence of a learnable bias term; ConvTranspose2D: 2-dimensional transposed convolutional layer;
ch_in: number of input channels; ch_out: number of output channels; ks: kernel size; s: stride; p: padding; op:
PyTorch parameter ‘output padding’, used to disambiguate the number of spatial dimensions of the resulting output;
b: presence of a learnable bias term; BatchNorm2D: 2-dimensional batch normalisation layer; affine: presence of
learnable affine transform coefficients; slope: slope for the activation function in the negative semi-domain. The
values of fjoint and fcrepr for the different scenarios considered are shown in Table 15.

Decoder (scenario (c))

Concatenate(flatten_features=True)
Linear(feats_in=[fjoint+fcrepr], feats_out=4096, b=True)
LeakyReLU(slope=0.2)
Unflatten(256, 4, 4)
ConvTranspose2D(ch_in=256, ch_out=256, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=256, ch_out=128, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=128, ch_out=64, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=64, ch_out=32, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=32, ch_out=3, ks=3, s=1, p=1, op=0, b=True)
Sigmoid()

Table 14: Hyperparameters for the attacks used for training and testing the purifier The Fgsm and Pdg attacks refer
to the training phase (see subsection 4.4), whereas the Pgd+EoT attack (Lee & Kim, 2024) refers to the robustness
assessment pipeline. The entry CCE denotes the Categorical CrossEntropy loss function. The ℓ∞ threat model is
assumed, and all inputs are linearly rescaled within [0.0, 1.0] before the attack.

Fgsm Pgd Pgd+EoT

Input clipping [0.0, 1.0] [0.0, 1.0] [0.0, 1.0]
# of steps 1 40 200
Step size ϵ∞ 0.01 0.007
Loss function CCE CCE CCE
# of EoT iterations 1 1 20
Optimiser SGD SGD

Table 15: Scenario-specific architectural hyperparameters for the purifier, as referred to in Table 10, Table 11,
Table 12, and Table 13.

Scenario (a) Scenario (b) Scenario (c)

fcrepr 512 512 768
fjoint 128 128 192
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Table 16: Hyperparameters used for training the purifier, grouped by scenario. The entry CCE denotes the Categorical
CrossEntropy loss function. The LR scheduler is stepped after each epoch.

All scenarios Sc. (a) Sc. (b) Sc. (c)

Optimiser RAdam+Lookahead
RAdam β1 0.9
RAdam β2 0.999
RAdam ϵ 10−8

RAdam Weight Decay None
Lookahead averaging decay 0.8
Lookahead steps 6
Initial LR 5 × 10−9

Loss function CCE
Sampled reconstructions per input 8

Epochs 200 200 250
LR warm-up epochs 25 25 31
LR plateau epochs 25 25 31
LR annealing epochs 150 150 188
Plateau LR 0.064 0.064 0.0128
Final LR 4.346 × 10−4 4.346 × 10−4 1.378 × 10−4

β increase initial epoch 25 25 32
β increase final epoch 34 34 43
Batch size 5120 2560 1024
Adversarial batch fraction 0.5 0.15 0.01

D Ablation study on the need for adversarial training

In order to determine whether it is necessary to train on adversarial examples each of the constituent parts of
Carso, an ablation study is performed. The architecture of Carso provided in section 5.1 is compared in
terms of clean and robust accuracy with those ablated as follows. A WideResNet-28-10 model is always
used as the classifier.

• Both the initial instance of the classifier (that used to extract the internal representation) and the
final (that used to actually perform classification) are trained on clean examples only.

• The final classifier is trained on clean examples only, whereas the former is adversarially-trained.

• The initial classifier is trained on clean examples only, whereas the latter is adversarially-trained.

Results of such comparison are shown in Table 17.

As it is possible to see, only the clean/AT ablation provides clean and adversarial accuracies comparable to
that of the original Carso architecture – and indeed, it even determines an improvement on the Cifar-10
and Cifar-100 datasets. On the other hand, adversarial training of the former instance of the classifier is
necessary to achieve the best robustness results on TinyImageNet-200.

Keeping in mind that the TinyImageNet-200 dataset is the closest representative considered for larger-scale
datasets, and that empirical robust accuracy results only constitute an upper bound of maximally attainable
robust accuracy, we support the original Carso architecture as the most effective for the achievement of
adversarial robustness on generic image classification datasets – even if at the cost of a slight clean accuracy
penalty. Since an adversarially-trained classifier would be used nonetheless as the latter, this does not incur
in increased training-time computational intensity.
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Table 17: Results of the ablation study on the architecture of Carso. The Clean Acc. column shows the test-set
accuracy on uncorrupted inputs for the specific ablated model; the randAA Acc. column shows the accuracy of the
same model on test-set inputs perturbed by means of the version of AutoAttack suitable for stochastic defences. In
the Type of ablation column, any entry different from None (original architecture) indicates the type of training used
for the first (before the solidus) and the second (after the solidus) classifier following input-to-output flow, within the
ablated Carso architecture.

Dataset Type of ablation Clean Acc. randAA Acc.

Cifar-10

clean/clean 0.7314 0.7070
AT/clean 0.6743 < 0.7070
clean/AT 0.8892 0.7975
None 0.8686 0.7613

Cifar-100

clean/clean 0.4395 0.4032
AT/clean 0.4373 < 0.4032
clean/AT 0.6876 0.6716
None 0.6806 0.6665

TinyImageNet-200 clean/AT 0.5677 0.5281
None 0.5632 0.5356

E Further results and comparisons

The following section contains additional results and comparisons, in the form of tabular data, that may be
of interest to the reader.

In particular, Table 19 compares the clean and robust accuracy of Carso with those of the top-5 adversarial
training defences according to the RobustBench Croce et al. (2021) leaderboard4 and the top-5 (if available)
purification-based defences according to Lee & Kim (2024), for Cifar-10/Cifar-100.

On shared columns, Table 2 can be considered a subset of Table 19. As discussed in subsection 5.2, Carso
tops the comparison in terms of adversarial accuracy, while maintaining a clean accuracy comparable with
that of some purification-based models.

Table 18, instead, investigates the same comparison across Carso and its classifier model, for adversarially-
pretrained networks different from those described in section 5.1 – in particular, worse-performing. As it is
possible to see, the increase in end-to-end adversarial accuracy determined by Carso does not depend in
absolute terms on the quality of the original classifier model employed.

Table 18: Clean (results in italic) and adversarial (results in upright) accuracy for additional models to those described
in subsection 5.2. The following abbreviations are used: AT/Cl: clean accuracy for the adversarially-pretrained model
used as the classifier, when considered alone; C/Cl: clean accuracy for the Carso architecture; AT/AA: robust accuracy
(by the means of AutoAttack) for the adversarially-pretrained model used as the classifier, when considered alone;
C/randAA: robust accuracy for the Carso architecture, when attacked end-to-end by AutoAttack for randomised
defences.

Dataset Classification model AT/Cl AT/AA C/Cl C/randAA

Cifar-10 Rebuffi et al. (2021) 0.8733 0.6075 0.8152 0.7070
Gowal et al. (2020) 0.8948 0.6280 0.8361 0.7335

Cifar-100 Rebuffi et al. (2021) 0.6241 0.3206 0.5723 0.5580

4 At the time of paper review, Git SHA hash: 78fcc9e48a07a861268f295a777b975f25155964.
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Table 19: Clean (results in italic) and adversarial (results in upright) accuracy for state-of-the-art adversarial defences,
compared to Carso. The Robust Acc. column shows the best (i.e. lowest practically achieved) accuracy on test-set
adversarial inputs, as obtained by either the original publication introducing the method, evaluation by AutoAttack
as shown on the RobustBench leaderboard, evaluation of bespoke adaptive attacks as shown on the RobustBench
leaderboard, or (for purification methods) evaluation by Pgd+EoT from Lee & Kim (2024). The Def. Type column
indicates whether the defence is based on adversarial training (AT), purification (P), or both (AT+P). Results for Carso
are the same as for Table 2.

Dataset Model Architecture Clean Acc. Robust Acc. Def. type

Cifar-10

Bartoldson et al. (2024) WideResNet-94-16 0.9368 0.7371 AT
Amini et al. (2024) MeanSparse WideResNet-94-16 0.9568 0.7310 AT
Peng et al. (2023) RaWideResNet-70-16 0.9311 0.7107 AT
Wang et al. (2023) WideResNet-70-16 0.9325 0.7069 AT
Bai et al. (2024b) ResNet-152 + WideResNet-70-16 0.9519 0.6971 AT
Lin et al. (2024) Diffusion-based 0.9082 0.6641 P
Lee & Kim (2024) Diffusion-based 0.9053 0.5688 P
Nie et al. (2022) Diffusion-based 0.9043 0.5113 P
Hill et al. (2021) Energy-based 0.8412 0.5490 P
Yoon et al. (2021) Diffusion-based 0.8612 0.3711 P
Ours Carso (WideResNet-28-10) 0.8686 0.7613 AT+P

Cifar-100

Wang et al. (2023) WideResNet-70-16 0.7522 0.4266 AT
Amini et al. (2024) MeanSparse WideResNet-70-16 0.7513 0.4225 AT
Bai et al. (2024b) ResNet-152 + WideResNet-70-16 0.8308 0.4180 AT
Cui et al. (2023) WideResNet-28-10 0.7385 0.3918 AT
Bai et al. (2024a) ResNet-152 + WideResNet-70-16 + Mixing Net 0.8521 0.3872 AT
Lin et al. (2024) Diffusion-based 0.6973 0.4609 P
Ours Carso (WideResNet-28-10) 0.6806 0.6665 AT+P
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